Stateczność konstrukcji ochronnych złożonych z geotub

Dr hab. inż. Krystyna Kazimierowicz-Frankowska Instytut Budownictwa Wodnego PAN w Gdańsku

Geotuby (inaczej georury) to długie, zamknięte, walcowe powłoki wykonane z geosyntetyków, które są stosowane coraz powszechniej w budownictwie hydrotechnicznym [4, 5, 11]. Wykorzystuje się je zarówno do budowy tymczasowych (zabezpieczeń przeciwpowodziowych), jak i trwałych konstrukcji ochronnych (falochronów, opasek brzegowych, ostróg, progów podwodnych itd.). Budowane konstrukcje ochronne składają się z coraz większej liczby elementów, a ich przekroje poprzeczne są coraz bardziej skomplikowane.

Podstawowym etapem w procesie projektowania każdego rodzaju konstrukcji inżynierskiej jest sprawdzenie jej stateczności. Aktualna wiedza na temat przyczyn i mechanizmów utraty stateczności konstrukcji ochronnych złożonych z geotub jest ograniczona. Zaobserwowane mechanizmy zniszczenia są skomplikowane, a dostępny materiał doświadczalny umożliwiający ich weryfikację jest ubogi. Brakuje zwłaszcza wyników badań dotyczących analizy stateczności konstrukcji ochronnych złożonych z układów geotub [6]. Do tej pory nie określono (tak jak ma to miejsce w przypadku tradycyjnych rodzajów konstrukcji inżynierskich) krytycznych wartości deformacji lub/i przemieszczeń, których nie można przekroczyć w trakcie ich użytkowania.

- Celem artykułu jest:
- przedstawienie możliwych mechanizmów utraty stateczności geotub,
- zdefiniowanie czynników i parametrów mających zasadniczy wpływ na stateczność umocnień złożonych z geotub,
- przegląd dotychczas stosowanych metod oceny stateczności,
- podsumowanie wniosków wynikających z dotychczas przeprowadzonych badań doświadczalnych,
- zaproponowanie metodyki obliczeń, którą można zastosować w celu oceny stateczności konstrukcji złożonej z geotub,
- przedstawienie wyników obliczeń, których celem było określenie wpływu stopnia napełnienia geotub na stateczność konstrukcji ochronnych.

MECHANIZMY UTRATY STATECZNOŚCI

Potencjalne mechanizmy zniszczenia geotub przedstawiono w tabl. 1. Sprawdzenie stateczności konstrukcji zbudowanych z geotub obejmuje:

- sprawdzenie stateczności wewnętrznej pojedynczych elementów (sprawdzenie dostatecznej wytrzymałości na rozciąganie geosyntetyku, z którego wykonano płaszcz geotuby) przy użyciu jednej z dostępnych metod [3, 4];
- sprawdzenie stateczności zewnętrznej konstrukcji ochronnej – należy sprawdzić, czy geotuby pod wpływem działania sił zewnętrznych nie ulegną nadmiernym deformacjom i/lub przemieszczeniom, co w konsekwencji może doprowadzić do ich zniszczenia.

METODY OCENY STATECZNOŚCI KONSTRUKCJI ZŁOŻONYCH Z GEOTUB

W celu sprawdzenia stateczności geotub stosuje się zwykle jedną z formuł przedstawionych w tabl. 2. Podstawowym problemem jest mała liczba danych eksperymentalnych dotyczących badań stateczności konstrukcji złożonych z układów (stosów) geotub, stąd ograniczona możliwość weryfikacji poprawności tych wzorów.

WNIOSKI Z BADAŃ DOŚWIADCZALNYCH

Praktycznie, dopiero w ostatnich latach przeprowadzono i opublikowano wyniki modelowych badań dotyczących analizy stateczności konstrukcji złożonych z układów kilku lub kilku-

Mechanizm zniszczenia	Schemat	Przyczyna wystąpienia
Poślizg (przesunięcie) geotuby		złe oszacowanie wartości sił zewnętrznych działających na geotubę
Obrót geotuby		złe oszacowanie wartości sił zewnętrznych działających na geotubę
Wyparcie podłoża pod geotubą		błędne obliczenia dotyczące nośności podłoża lub ciężaru konstrukcji ochronnej
Globalna utrata stateczności		błędy dotyczące obliczeń stateczności konstrukcji inżynier- skiej, w której jeden z elementów stanowią geotuby
Podmycie geotuby		błędne oszacowanie warunków wodno-gruntowych; błędy w trakcie procesu napełniania geotuby
Nadmierne osiadanie podłoża		błędne obliczenia dotyczące nośności podłoża lub ciężaru konstrukcji ochronnej
Rozerwanie materiału (płaszcza) geotuby		błędy popełnione na etapie sprawdzenia nośności wewnętrznej geotuby (nie został spełniony warunek dostatecznej wytrzyma- łości na rozciąganie materiału geotuby)
Przedostawanie się materiału wypełnia- jącego geotubę na zewnątrz (wymywa- nie gruntu przez płaszcz geotuby)		błędy na etapie doboru materiałów użytych do budowy (złe dobranie parametrów płaszcza geotuby i materiału wypełnia- jącego)
Nadmierna deformacja geotuby (wystę- pująca w wyniku konsolidacji materiału wypełniającego)		błędy na etapie wyboru materiału wypełniającego (złe osza- cowanie przebiegu procesu konsolidacyjnego) lub na etapie wykonania geotuby (niepoprawny stopień napełnienia tuby)

Tabl. 1. Potencjalne mechanizmy zniszczenia geotub [8]

ſabl.	2.	Wzorv	stosowane	do	ocenv	stateczności	geotub
		, Lory	scosomane	uv	occiny	Statechnosei	Scotab

Autor	Formuła używana do sprawdzenia stateczności	Oznaczenia
Pilarczyk [10]	$H < \frac{4}{3} Ab \frac{\Delta_t}{h_1^3(1+k)}$	$k = \text{współczynnik odbicia} (k \approx 0,45)$ $H = \text{wysokość fali}$ $h_1 = \text{wysokość geotuby}$ $A = \text{pole przekroju poprzecznego geotuby}$ $b = \text{szerokość geotuby}$ $\Delta_t = (1-n) \left(\frac{\rho_s - \rho_w}{\rho_w} \right)$ $\rho_w = \text{gęstość wody}$ $\rho_s = \text{gęstość materiału wypełniającego}$
CUR 217 [1]	$\frac{H_s}{\Delta_t D_k} \leq 1$	$ \begin{array}{l} H_{s} & - \mbox{wysokość obliczeniowa fali znamionowej} \\ D_{k} & - \mbox{wysokość geotuby po napełnieniu, jeśli leży poprzecznie do kierunku roz-chodzenia się fali lub kierunku przepływu wody \\ D_{k} & - \mbox{długość geotuby (dla tub ułożonych równolegle do kierunku fal)} \\ \Delta_{i} & - \mbox{gęstość względna materiału w geotubie} \end{array} $
Van Steeg & Vastenburg [12]	$\frac{\chi H_s}{\Delta_t \sqrt{BD}(f\cos\alpha + \sin\alpha)} \le 0,65$	$ \begin{array}{l} H_{s} & - \text{wysokość obliczeniowa fali znamionowej} \\ B & - \text{szerokość geotuby} \\ D & - \text{wysokość konstrukcji złożonej z geotub} \\ f & - \text{współczynnik tarcia} \\ \alpha & - kąt nachylenia konstrukcji \\ \chi & - \text{współczynnik redukcyjny falowania} \\ \Delta_{t} & - gęstość względna materiału w geotubie \\ \end{array} $
Oh &Shin [9]	$SF_{przesunięcie} = \frac{F}{P_h} = \frac{P_v \tan \theta'}{P_w h_{GT}}$ $SF_{obrivi} = \frac{M_R}{M_O} = \frac{P_v B'_2}{P_W h_{GT}/2}$	 P_h – wypadkowa siła pozioma działająca na konstrukcję F – wypadkowa siła pionowa działająca na konstrukcję h_{GT} – wysokość ekwiwalentnego prostokąta, którym zastępuje się kształt geotuby w celu uproszczenia obliczeń θ' – kąt tarcia między materiałem geotuby i podłożem B' – szerokość ekwiwalentnego prostokąta, którym zastępuje się kształt geotuby w celu uproszczenia obliczeń

nastu geotub [7, 12]. Na podstawie ich analizy sformułowano następujące wnioski:

- najbardziej narażone na przemieszczenia pod wpływem obciążeń od ruchu falowego są geotuby znajdujące się na szczycie konstrukcji ochronnej;
- przemieszczenia geotub występujące pod wpływem obciążeń od ruchu falowego zapoczątkowują proces utraty stateczności przez całą konstrukcję ochronną złożoną z geotub, a podstawowy zaobserwowany mechanizm utraty stateczności jest inicjowany przez poślizg geotuby lub geotub znajdujących się na szczycie konstrukcji ochronnej;
- geotuby znajdujące się na szczycie konstrukcji są szczególnie podatne na przemieszczenia, gdy są zanurzone w wodzie tylko częściowo;
- po wstępnym przemieszczeniu elementu/ów konstrukcji, które występuje/ą pod wpływem działania obciążeń od ruchu falowego, konstrukcja ochronna wykazuje większą odporność na działanie obciążeń (większą stateczność wobec działających obciążeń od ruchu falowego);
- do zniszczenia konstrukcji (krytycznych dla jej ogólnej stateczności przemieszczeń elementów) jest potrzebna znacznie większa energia falowania niż ta, która wywołuje początkowe przemieszczenia górnych elementów konstrukcji;
- wzmocnienie konstrukcji ochronnej poprzez umieszczenie dwóch geotub w najwyższej jej warstwie wywołuje bardzo mały (w praktyce pomijalny) wzrost jej stateczności, ma jednak wpływ na ograniczenie energii od falowania przenoszonej przez konstrukcję.

CHARAKTERYSTYKA PROPONOWANEJ METODYKI ANALIZY STATECZNOŚCI

Sprawdzenie stateczności budowli złożonych z geotub wymaga analizy układu sił działających na najbardziej niekorzystnie położone (górne) elementy umocnienia. Do oszacowania sił działających na geotubę znajdującą się na szczycie konstrukcji można zastosować metodę, której założenia przedstawiono w tabl. $3 \div 4$ (zmodyfikowana metoda [2]). Przy jej użyciu sprawdza się stateczność górnej geotuby na przesunięcie i obrót. Porównanie wyników badań doświadczalnych [7] z ich predykcją teoretyczną uzyskaną przy użyciu opisanej metody (dobra zgodność wyników) wskazuje, że można ją stosować w analizie stateczności konstrukcji złożonych z geotub. Wykorzystano ją do szacunków wpływu stopnia napełnienia geotub na stateczność konstrukcji o typowym przekroju poprzecznym (por. tabl. 4).

PROCEDURA I WYNIKI OBLICZEŃ

Wykonano obliczenia stateczności modeli konstrukcji ochronnych o przekrojach poprzecznych pokazanych w tabl. 5. Do analiz wybrano schematy konstrukcji, których przykładowymi wynikami badań doświadczalnych przeprowadzonych w kanale falowym dysponowano (eksperymenty wykonywane przy stopniu napełnienia geotub wynoszącym 80%) [7]. Celem wykonanych obliczeń było zbadanie wpływu stopnia napełnienia geotub na stateczność konstrukcji ochronnych. Badano statecz-

Tabl. 3.	Obliczenia	wstepne – krótka	charakterystyka
	0 on energy	morphe morna	

ność konstrukcji zbudowanych z geotub napełnionych w: 85%, 80%, 75%, 70%, 65% i 60% materiałem wypełniającym.

Obliczenia wykonywano dla takich samych warunków falowych oddziałujących na konstrukcję, stosując metodykę przedstawioną w poprzednim rozwiązaniu. Zmiana stopnia napełnienia geoelementów tworzących konstrukcję ochronną skutkowała zmianą ich podstawowych parametrów (wysokości, szerokości i pola przekroju poprzecznego), co uwzględniano w trakcie prowadzonych analiz. Przykładowe wyniki obliczeń przedstawiono w tabl. 5. Porównano tam wartości współczynników bezpieczeństwa F_1 i F_2 , które wyrażają stosunek wartości sił tarcia (przeciwdziałających poślizgowi górnej geotuby) do wartości sił powodujących poślizg geotuby ułożonej na szczycie konstrukcji. Wartości współczynników F_1 określają możliwość wstępnego przesunięcia górnego elementu konstrukcji (obliczono je dla wartości kąta $\alpha_{pocz} = 5^{\circ}$ – por. tabl. 4), a wartości współczynników F_2 określają niebezpieczeństwo krytycznego przesunięcia geotuby umieszczonej na szczycie konstrukcji (wyrażają stosunek sił tarcia do sił powodujących poślizg obliczony dla wartości kąta $\alpha_{kryt} = 21^{\circ}$).

WNIOSKI

Jednym z istotnych parametrów mających wpływ na kształt geotub i stateczność umocnień zbudowanych z takich elementów jest ich stopień napełnienia. W artykule przedstawiono wyniki obliczeń, w trakcie których porównywano stateczność konstrukcji o typowych przekrojach poprzecznych wykonanych z geotub o różnym stopniu napełnienia (zmieniał się on od 60 do 85%). Porównano podatność na poślizg geotub umieszczonych na szczycie konstrukcji ochronnych. Wyniki ostatnio opublikowanych badań doświadczalnych [7] sugerują bowiem, że to ich przemieszczenia występujące pod wpływem obciążeń od ruchu falowego zapoczątkowują proces utraty stateczności przez całą konstrukcję ochronną, a podstawowy zaobserwowany mechanizm utraty stateczności jest inicjowany przez poślizg geotuby lub geotub znajdujących się na szczycie konstrukcji ochronnej. To właśnie wyniki tych eksperymentów (przeprowadzonych na geotubach o stopniu napełnienia 80%) stanowiły punkt wyjścia do przeprowadzonych analiz. Uzyskane wyniki obliczeń (tabl. 5) potwierdziły, że stopień napełnienia geotub ma istotny wpływ na stateczność geotub, a ewentualne błędy popełnione na etapie napełniania geoelementów (mniejszy od planowanego stopień napełnienia geotub) mogą mieć bezpośredni wpływ na trwałość (stateczność) konstrukcji.

LITERATURA

1. CUR, 2006. CUR 217: Ontwerpen met geotextiele zandelementen (in Dutch), Stichting

2. Goda, Y.: New Wave Pressure Formulae for Composite Breakwaters. In ICCE. Copenhagen 1974, 1702-1720.

3. Kazimierowicz, K.: Simple analysis of deformation of sand-sausages. Proceedings of the 5th International Conference on Geotextiles, Geomembranes and Related Products, Singapore 1994.

4. Kazimierowicz-Frankowska K.: Wybrane aspekty projektowania konstrukcji geosyntetycznych wzmacniających brzeg morski. Inżynieria Morska i Geotechnika, nr 4/2012.

5. Kazimierowicz-Frankowska K.: Zasady projektowania geosyntetycznych powłok stosowanych jako zabezpieczenia przeciwpowodziowe. Inżynieria Morska i Geotechnika, nr 4/2013.

6. Kazimierowicz-Frankowska, K.: Stability of geosynthetic tubes used for flood protection. Praca opublikowana [W:] Proceedings of the 10th International Conference on Geosynthetics, Berlin, 21-25 wrzesień 2014 r.

7. Kriel H. J.: Hydraulic stability of multi-layered sand-filled geotextile tube breakwaters under wave attack. Praca magisterska: Master of Science in the Faculty of Engineering at Stellenbosch University, 2012.

8. Lawson, C. R.: Geotextile containment for hydraulic and environmental engineering. Geosynthetics International, Vol. 15, nr.6, 2008.

9. Oh Y. I., Shin E. C.: Using submerged geotextile tubes in the protection of the E. Korean shore. Coastal Engineering, 53, 2006, 879-895.

10. Pilarczyk K.: Geosynthetics and geosystems in Hydraulic and Coastal Engineering. Balkema, Rotterdam 2000.

11. Sobolewski J., Wilke M.: Georury wypełnione piaskiem w budownictwie wodnym i morskim. Wymiarowanie i praktyczne przykłady zastosowań. Inżynieria Morska i Geotechnika, nr 1/2011.

12. Van Steeg P., Vastenburg E.: Large scale physical model tests on the stability of geotextile tubes. Deltares report, Delft 2010.

Tabl. 5. Wyniki obliczeń

