Odwzorowanie anizotropii wytrzymałościowej koluwiów zwietrzelinowych w numerycznej analizie stateczności zbocza na Pogórzu Karpackim

Mgr inż. Łukasz Kaczmarek^{1,2}, dr hab. Paweł Dobak², prof. UW, mgr inż. Adam Kasprzak¹, dr hab. inż. Paweł Popielski¹, prof. PW

¹Politechnika Warszawska, Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska ²Uniwersytet Warszawski, Wydział Geologii

W ocenach stateczności zboczy generalizuje się właściwości masywu gruntowego, przyjmując w obrębie wydzielanych warstw izotropowość właściwości fizyczno-mechanicznych, co nie zawsze jest zgodne z uwarunkowaniami wynikającymi z aktualnej struktury gruntu. Kształtowana jest ona nie tylko we wcześniejszych etapach sedymentacji, diagenezy, lecz także postdiagenetycznego oddziaływania pól napreżeń tektonicznych oraz w przebiegu współczesnych procesów wietrzeniowych i geodynamicznych. Efektem tego jest poligenetyczna anizotropia strukturalna i geomechaniczna. Obok zmian predyspozycji wytrzymałościowych, to jest różnych parametrów wytrzymałościowych gruntu w zależności od kierunku oddziaływania naprężenia (wynikających na przykład z naturalnego uwarstwienia gruntów), na zboczach ujawniają się też wtórne cechy strukturalne wynikające z procesów wietrzeniowych i powolnej redepozycji materiału wzdłuż zbocza. Zarówno strefy pełzania jak i powierzchnie poślizgu osuwisk rozwijają się łatwiej w miejscach, gdzie osłabienia wynikające z anizotropii cech wytrzymałościowych są skorelowane z kierunkiem potencjalnych przemieszczeń wynikających z aktualnej geometrii zbocza.

W artykule przedstawiono studium przypadku w oparciu o alternatywne obliczenia wskaźnika stateczności na zboczu wzgórza Chełm w powiecie Bochnia na granicy Pogórza Karpackiego z obniżeniem Zapadliska Przedkarpackiego.

UWARUNKOWANIA GEOLOGICZNO-INŻYNIERSKIE

Strukturalne nieciągłości i dezintegracja masywu skalnego w toku długotrwałego oddziaływania czynników egzogenicznych (woda, lód, zmienne temperatury) prowadzą do powstawania różnych, specyficznych dla danego podłoża geologicznego profili wietrzeniowych. Rozpatrywane zbocze zbudowane jest z neogeńskich uwarstwionych łupków (warstwy chodenickie) przykrytych ilastymi gruntami koluwialno-zwietrzelionwymi. Zróżnicowanie przestrzenne wietrzeniowej dezintegracji charakteryzowane jest jako cztery strefy, poczynając od najgłębszej, którą stanowią łupki niezwietrzałe i kolejnych trzech z postępującym ku górze stopniem dezintegracji. Najbardziej rozwinięte skutki przeobrażeń występują w powierzchniowych strefach. Naturalne uwarstwienia strukturalne skały macierzystej sprzyjają postępowi procesu wietrzenia. Głębokość rozpoznanej strefy dezintegracji skały obserwowana w rdzeniu wiertniczym koresponduje z badaniami na potrzeby hydrotechniki. W pracy [9] odnotowano następującą głębokość oddziaływania procesów wietrzenia w profilach Karpat fliszowych: strefy silnie zwietrzałe $3 \div 5$ m, przy maksymalnym zasięgu do 15 m. Zasięg procesów wietrzenia wzdłuż szczelin może sięgać nawet do 50 m p.p.t.

W analizowanym przypadku profile wiertnicze otworów wskazują na strukturalne uwarunkowania anizotropii. Wilgotność naturalna materiału gruntowo-skalnego związana jest z oddziaływaniem czynników zewnętrznych (opady) i maleje wraz ze wzrostem głębokości, co może wynikać ze znacznej izolacyjności zwietrzelin ilastych. Dominująca w nich frakcja ilasta charakteryzuje się wartościami współczynnika przepuszczalności rzędu $k = 10^{-9} \div 10^{-10}$ m/s.

Procesy wietrzeniowe znajdują bezpośrednie przełożenie na charakterystyki wytrzymałościowe gruntów oraz ilościową ocenę redukcji parametrów wytrzymałościowych. Charakter tych zmian, wyprowadzony przykładowo na podstawie licznych badań iłów krakowieckich i ich zwietrzelin, przedstawiono w pracy [7], akcentując rolę procesu wietrzenia oraz ilościowy charakter relacji wytrzymałości maksymalnej i rezydualnej, których zróżnicowanie w zwietrzelinach maleje znacząco.

Współczesny stan strukturalny i właściwości geomechaniczne materiału gruntowo-skalnego zbocza jest więc efektem

Rys. 1. Charakter zmian wytrzymałości na ścinanie wskutek wietrzenia i występowania powierzchni nieciągłości [7]

zarówno procesu wietrzenia, jak i powolnej redepozycji materiału wzdłuż zbocza. Tworzy to specyficzne wtórne strefy osłabień, których geometria nałożona jest na pierwotne insekwentny układ warstw iłołupków. Rodzaj budowy geologicznej określono na podstawie prac wiertniczych i związanych z instalowaniem przez PIG-PIB sieci monitoringu w ramach Systemu Osłony Przeciwosuwiskowej [5]. Analizowane zbocze charakteryzuje się średnim nachyleniem około 20° oraz aktywnymi procesami osuwiskowymi. Szczegółowy opis uwarunkowań geologicznych można znaleźć w Atlasie osuwisk województwa małopolskiego [1] oraz w opublikowanych analizach stateczności opisywanego zbocza [6].

Wspomniany wyżej podział strefy wietrzeniowej jest punktem wyjścia do wyróżnienia w obrębie zbocza warstw geotechnicznych, gdzie podstawą wydzieleń są cechy litologiczno--strukturalne.

W utworach macierzystych (strefa I) pierwotnie uwarstwionych (łupki, iłołupki) dezintegracje rozwijają się początkowo wzdłuż powierzchni naturalnego spękania i uwarstwienia. Grawitacyjne przemieszczenia osłabionego, zwietrzałego materiału powodują powstawanie uwarunkowanych nachyleniem zbocza nieciągłości koluwialno-zwietrzelinowych (strefa II). Przykład geodezyjnych obserwacji przemieszczeń materiału koluwialnozwietrzelinowego w obszarze Karpat można znaleźć w publikacji [3]. Ta orientacja wydaje się dominować w kształtowaniu przebiegu powierzchni osłabień i została uwzględniona w modelowaniu numerycznym. Wyżej w profilu zaznacza się wzrost stopnia dezintegracji oraz kształtowanie się gruntu ilastego (strefa III) z obecnością fragmentów zwietrzałego iłołupka i łupka. W strefie powierzchniowej gruntu, narażonej na intensywne oddziaływanie warunków pogodowych, tworzy się warstwa iłu i pyłu (strefa IV).

Charakterystykę wytrzymałościową i fizyczną poszczególnych warstw geotechnicznych oraz przyporządkowanie do określonych stref wietrzeniowych przedstawiono w tabl. 1. Wyróżniono tu między innymi zwietrzeliny ilaste o różnym udziale frakcji piaszczystej i pyłowej, co odzwierciedla się w zmianach spójności (warstwy geotechniczne I i II). Przyjęte parametry określono na podstawie archiwalnych badań i literatury [5, 7, 12]. Moduł Younga i współczynnik Poissona ilastego koluwium-zwietrzelinowego przyjęto na poziomie E = 65 MPa oraz v = 0,3. W przypadku skały macierzystej – łupków przyjęto dziesięciokrotnie wyższą wartość modułu Younga.

		8 T 1/			
Litologia warstw (strefy wietrzeniowe)	Numer warstwy geotechnicznej	Wilgotność naturalna w _n [%]	Ciężar objętościowy γ [kN/m³]	Efektywny kąt tarcia wewnętrznego ¢' [°]	Efektywna spójność c' [kPa]
Ił z pyłem (IV)	Ib	35	18,0	7	25
Ił z pyłem i piaskiem (IV)	Ia	33	18,5	7	30
Strefa zwietrzałego iłołupku przechodzącego w ił (III)	II	30	19,0	8	35
Strefa iłołupku o osłabionej wytrzymałości (II)	III	25	20,0	10*	40*
				5**	20**
Łupki niezwietrzałe (I)	IV	21	22,0	18	65

 Tabl. 1. Fizyczne i wytrzymałościowe wartości parametrów dla wyszczególnionych warstw geotechnicznych (na podstawie danych z dokumentacji – [5] oraz monografii [8 i 12])

*Parametry wytrzymałościowe w osi prostopadłej do nieciągłości (parametry wykorzystywane w modelu izotropowym)

**Parametry wytrzymałościowe w osi równoległej do nieciągłości zwietrzelinowych

Rys. 2. Przestrzenny model obliczeniowy z uwzględnieniem wydzielonych warstw a) model z wykorzystaniem elementów typu *interface*; b) geometria zbocza z wykorzystaniem modelu *jointed rock*

Na rys. 2 przedstawiono obliczeniowe modele numeryczne w płaskim stanie odkształceń, które utworzono na podstawie zmienności utworów litologicznych północno-wschodniego zbocza Chełm. Po dyskretyzacji modeli numerycznych zastosowano warunki brzegowe: na bocznych krawędziach zablokowano przemieszczenia poziome, natomiast w podstawie modelu zdefiniowano warunek brzegowy zerowych przemieszczeń, zarówno w kierunku poziomym, jak i pionowym. Model numeryczny wykorzystany w pierwszym podejściu (A) zawiera zaznaczone elementy typu interface w obrębie warstwy III (rys. 2a). W drugim podejściu (B) charakterystykę geomechaniczną warstwy III odtworzono za pomocą modelu materiałowego jointed rock, co schematycznie zaznaczono na rys. 2b ukośnymi szarymi liniami. Zarówno w przypadku podejścia A, jak również B, określone powierzchnie korespondują z orientacją powierzchniami osłabienia, które mają dominujący wpływ na warunki stateczności.

METODYKA OBLICZEŃ

Obliczenia numeryczne umożliwiają prowadzenie wariantowych analiz stanu równowagi zboczy. Na ich podstawie można wyznaczyć wartości wskaźnika stateczności *SF* dla określonego zbocza w nawiązaniu do przyjętego zestawu parametrów (geometrycznych i fizycznych). Na podstawie obliczeń MES uzyskuje się obraz względnych przemieszczeń pozwalających na lokalizację potencjalnych powierzchni poślizgu, a zatem sposobu i kierunku rozwoju obszaru osuwiskowego oraz jego zasięgu. Wiarygodność obliczeń zależy od prawidłowego określenia cech zbocza charakteryzowanych przede wszystkim przez jego morfologię oraz model geomechaniczny wynikający z budowy geologicznej. Przykład wieloetapowej procedury określenia warunków stateczności masywu fliszowego za pomocą rozpoznania budowy geologicznej metodami geofizycznymi z wykorzystaniem badań laboratoryjnych oraz obliczeń numerycznych MES można znaleźć w publikacji [4].

Do określania wskaźnika stateczności analizowanych zboczy wykorzystano aplikowaną w MES metodę redukcji parametrów wytrzymałościowych (c- ϕ redukcji) [13] przy użyciu programu Plaxis 8.6.

Zastosowano dwa sposoby implementacji (podejście A i B) do modelu obliczeniowego anizotropii związanej z kierunkowością charakterystyki mechanicznej gruntu.

Podejście A odtwarza anizotropię na założonych kierunkach osłabień, gdzie wprowadzono współczynnik redukcji parametrów wytrzymałościowych $R_{inter} = 0,5$, za pomocą elementów typu *interface*. W podejściu tym każda powierzchnia zmiany parametrów wytrzymałościowych musi być zdefiniowana manualnie, co wiąże się z subiektywnością. W alternatywnym podejściu B odtworzono anizotropię za pomocą modelu konstytutywnego *jointed rock* przy zastosowaniu programu Plaxis 8.6. Wykorzystany model jest zbliżony do modelu *multilaminate*, który został zaimplementowany do programu Z_Soil. Oba programy stosowane są w obliczeniach MES dla zagadnień związanych między innymi ze statecznością. *Jointed rock* jest sprężysto-idealnie plastycznym modelem dedykowanym ośrodkom warstwowym,

Rys. 3. Przykładowe relacje kierunku warstwowania na tle charakterystyk wytrzymałościowych gruntu w standardowych badaniach trójosiowych łupka z Tournemire: a) zmiana osiowej wytrzymałości przy różnych wartościach ciśnienia okólnego; b) typowe orientacje powierzchni zniszczenia ([8], zmod. [10])

takim jak na przykład iłołupki. Zakłada się w nim istnienie wzajemnie równoległych powierzchni osłabienia, wzdłuż których następuje przemieszczenie. Na powierzchniach osłabienia obowiązuje ograniczenie maksymalnej wytrzymałości wynikające z kryterium Coulomba [11].

Opisywane dwa podejścia w modelowaniu numerycznym, to jest powierzchnie typu *interface* oraz model *jointed rock*, pozwalają na przyjmowanie różnych kierunków anizotropii wytrzymałości gruntu (rys. 3). Przykład szczegółowego omówienia anizotropii gruntu w modelowaniu numerycznym można znaleźć na przykład w publikacji [2].

WYNIKI

W przeprowadzonych obliczeniach, stosując dwa różne sposoby uwzględnienia anizotropii, uzyskano 20% różnicę między wartościami *SF*. Inny był także kształt i zasięg przemieszczeń w ośrodku gruntowym. W tabl. 2 przedstawiono rezultaty obliczeń wskaźnika stateczności.

Podejście A pozwala na odtworzenie skomplikowanych powierzchni osłabienia oraz kontrolę parametrów wytrzymałościowych na poszczególnych powierzchniach. Niestety jest to również związane z potrzebą zdefiniowania znacznej licz-

Tabl. 2. Wyniki obliczeń wskaźnika stateczności analizowanych dwóch modeli zbocza z Pogórza Karpackiego

Podejście	SF [-]	Opis
А	1,80	Powierzchnia poślizgu o kształcie kołowo-wal- cowym na granicy skały macierzystej – ilastego koluwium-zwietrzelinowego rozwijająca się na zde- finiowanych powierzchniach osłabienia za pomocą elementów typu <i>interface</i>
В	1,47	Powierzchnia poślizgu rozwijająca się na zdefinio- wanych płaszczyznach osłabienia w obrębie ilastego koluwium-zwietrzelinowego w postaci zsuwu

by obszarów (*subdomen*) i lokalizacji powierzchni osłabienia w obszarze ośrodka gruntowego, co jest pracochłonne i wiąże się z potrzebą większej liczby elementów skończonych. W przypadku zastosowania modelu konstytutywnego *jointed rock* można w szybki sposób, bez potrzeby modyfikacji siatki elementów skończonych, wprowadzić cechy anizotropii gruntu. Dzięki temu można odwzorować charakterystyczną formę osuwiska, na przykład w postaci zsuwu po powierzchniach o osłabionych parametrach wytrzymałościowych. Na rys. 4 przedstawiono zestawienie wyników modelowania w postaci przekrojów względnych przemieszczeń gruntu po utracie stanu równowagi.

PODSUMOWANIE

W artykule porównano dwa różne sposoby implementacji w obliczeniowych modelach stateczności anizotropowego osłabienia gruntu. Do uwzględnienia anizotropii ośrodka gruntowego wykorzystano w podejściu A elementy typu *interface*, a w podejściu B wykorzystano materiałowy model *jonited rock*. Numeryczne modelowanie uwarunkowań stateczności przeprowadzono w nawiązaniu do geometrii przykładowego zbocza z Pogórza Karpackiego oraz wytrzymałościowych parametrów wyprowadzonych na podstawie analizy danych regionalnych i dokumentacyjnych. Parametry wytrzymałościowe przyporządkowano do zgeneralizowanych stref profilu wietrzeniowego określonego na podstawie opisu rdzenia wiertniczego z rozpatrywanego zbocza.

Uwzględnienie kierunkowego osłabienia wytrzymałości według podejścia B skutkuje niższą o około 20% wartością wskaźnika stateczności niż w przypadku podejścia A. Istotne znaczenie ma w tym przypadku uzyskanie charakteru powierzchni przemieszczeń w postaci zsuwu, co nawiązuje do prawdopodobnych rzeczywistych zachowań gruntu w obrębie modelowanego zbocza. Wyniki te stanowić mogą przesłankę do stosowania metody B jako bezpieczniejszej w rozpatrywanych warunkach inżyniersko-geologicznych. Przeprowadzone porównania wskazują

Rys. 4. Przestrzenna zmienność przemieszczeń uzyskana w toku obliczeń SF przy modelowaniu anizotropii według podejścia A i B

jednocześnie na zasadność prowadzenia analiz z uwzględnieniem dwóch rozpatrywanych podejść modelowania anizotropii ośrodka w celu zebrania szerszych doświadczeń w innych odpowiednio udokumentowanych przypadkach. Zróżnicowanie rezultatów modelowania na tle znacznej strukturalnej zmienności warunków geologicznych obserwowanej w obszarze karpackim potwierdza potrzebę i istotność etapu dokładnego odwzorowania rzeczywistych charakterystyk wytrzymałościowych w realizacji prognostycznych obliczeń numerycznych oraz przy geotechnicznym projektowaniu zabezpieczeń przeciw osuwiskowych.

LITERATURA

 Chowaniec J., Wójcik A., Mrozek T., Rączkowski W., Nescieruk P., Perski Z., Wojciechowski T., Marciniec P., Zimnal Z., Granoszewski W.: Osuwiska w województwie małopolskim. Atlas – przewodnik. Departament Środowiska, Rolnictwa i Geodezji Urzędu Marszałkowskiego Województwa Małopolskiego, 2012.

2. Cudny M., Vermeer P. A.: On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework. Computers and Geotechnics, 31 (1), 2004, 1-22. https://doi.org/10.1016/j.compgeo.2003.12.001.

 Ćwiąkała P., Stanisz J., Wróbel A., Kaczmarczyk R., Drwal P., Grabek P., Daroch M., Pękala M., Świątek M., Zierkiewicz M.: Wyznaczenie przemieszczeń powierzchniowych na osuwisku w Kłodnem (gmina Limanowa, południowa Polska). Przegląd Geologiczny, 64 (2), 2016, 122-130.

4. Gawriuczenkow I., Kaczmarek Ł., Kiełbasiński K., Kowalczyk S., Mieszkowski R., Wójcik E.: Stateczność zbocza i zagrożenie osuwiskowe

w świetle kompleksowych badań geologicznych. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 26 (1), 2017, 85–98. doi:10.22630/ PNIKS.2017.26.1.08.

5. Jaskólski Z., Kos J., Foryś M., Szymonik L., Bakaj M.: Dokumentacja Geologiczno-Inżynierska dla zadania: Stabilizacja osuwiska wraz z remontem drogi w miejscowości Chełm. Przed. Geol. S.A., 2013.

6. Kaczmarek Ł., Dobak P., Kasprzak A., Popielski P., Nescieruk P., Kos J.: Wybrane metody analiz wytrzymałości gruntów i stateczności zbocza na przykładzie wzgórza Chełm przy granicy nasunięcia karpackiego. Analizy i doświadczenia w geoinżynierii. Wydawnictwo Politechniki Śląskiej, 2017.

7. Kaczyński R.: Warunki geologiczno-inżynierskie na obszarze Polski. PIG-PIB, 2017.

8. Niandou H., Shao J. F., Henry J. P. Fourmaintraux D.: Laboratory investigation of the mechanical behavior of Tournemire shale. Int. J. Rock Mech. Min. Sci., 34, 1977, 3-16.

 Niedzielski H.: Geologia projektowanych zapór w polskich Karpatach.
 Politechnika Krakowska, Instytut Geotechniki, Zakład Geologii Inżynierskiej i Hydrogeologii, 1977.

10. Pietruszczak S.: Podstawy teorii plastyczności w geomechanice. Dolnośląskie Wyd. Eduk., 2015.

11. Plaxis BV .: Material Model Manual. 2016.

 Zabuski L., Thiel K., Bober L.: Osuwiska we fliszu Karpat polskich: geologia – modelowanie – obliczenia stateczności. Wydawnictwo IBW PAN, 1999.

13. Zimmermann Th., Rodriguez C., Dendrou B.: Z_SOIL.PC: A program for solving soil mechanics problems on a personal computer using plasticity theory. Int. Conf. on Geomechanics, Balkema, 1987, At Innsbruck.